
Utility-Aware Social Event-Participant Planning

Jieying She†, Yongxin Tong‡, Lei Chen†
†Department of Computer Science and Engineering, The Hong Kong University of Science and

Technology, Hong Kong SAR, PR China
‡SKLSDE Lab, School of Computer Science and Engineering, Beihang University, PR China

†{jshe, leichen}@cse.ust.hk ‡yxtong@buaa.edu.cn

ABSTRACT
Online event-based social network (EBSN) platforms are be-
coming popular these days. An important task of managing
EBSNs is to arrange proper social events to interested users.
Existing approaches usually assume that each user only at-
tends one event or ignore location information. The overall
utility of such strategy is limited in real world: 1) each user
may attend multiple events; 2) attending multiple events will
incur spatio-temporal conflicts and travel expenses. Thus,
a more intelligent EBSN platform that provides personal-
ized event planning for each participant is desired. In this
paper, we first formally define the problem of Utility-aware
Social Event-participant Planning (USEP), which is proven
to be NP-hard. To solve the USEP problem, we first devise
a greedy-based heuristic algorithm, which performs fast un-
der certain circumstances but has no approximation guaran-
tee. We then present a two-step approximation framework,
which not only guarantees a 1

2
-approximation ratio but also

includes a series of optimization techniques to improve its
space/time efficiency. Finally, we verify the efficiency and
effectiveness of the proposed methods through extensive ex-
periments on real and synthetic datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

Keywords
Event-based social network; Event planning

1. INTRODUCTION
A new type of social media, event-based social network

(EBSN)[21], is becoming popular recently. In EBSNs, online
users organize and register for offline social activities. For
example, Plancast1 provides a platform for users to organize,
attend and share social events, and Meetup2 allows users

1http://plancast.com
2http://www.meetup.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749446.

to create groups and organize events for other users to join.
Such EBSNs facilitate social event organization and ease the
recruitment of activity participants.

However, existing EBSNs only provide an information shar-
ing platform[21] without strategic event organization and
personalized event planning. Recently, the problem of global
event organization strategy in EBSNs has been brought to
attention. [19] proposes the Social Event Organization (SEO)
problem to assign events to users, which maximizes the over-
all satisfaction of users towards the arranged events and also
the social affinity among the users participating the same
event. However, this work only considers a simple case
of assigning one single event to each participant and thus
naturally ignores both spatio-temporal conflicts of different
events and multiple events planning for each participant.
[26] also studies a global event organization strategy, but
does not take travel expenditure into consideration. Imag-
ine the following scenario. Being a sports enthusiast and a
music fan, Alice attends various sports activities and con-
certs published on Meetup on weekends. However, Alice
encounters a dilemma on Friday night since Meetup rec-
ommends her three interesting but conflicting activities on
Saturday: a running club activity from 9:00 a.m. to 11:00
a.m., a tennis match from 10:00 a.m. to 1:30 p.m., and a
jazz music party from 2:00 p.m. to 3:00 p.m. In addition to
time conflicts, location information is another concern since
Alice needs a half hour by taxi or two hours by bus from
the tennis gymnasium to the party venue. Although Alice
is interested in all the three events, she has to face trade-
offs according to spatio-temporal conflicts of events and her
budget of travel expenditure in terms of time, money, etc.
Clearly, the approaches in [19][26] cannot handle the afore-
mentioned scenario since the constraints of spatio-temporal
conflicts, multiple events allocation for each participant or
travel expenditure are ignored.

As discussed above, many users often face the dilemma of
choosing events to attend properly from a long and proba-
bly conflicting recommendation list on EBSN platforms. On
the other hand, existing EBSNs focus on pushing recommen-
dation to all potential participants for each event, in which
case the capacities of events are out of consideration, and the
satisfaction for both event organizers and participants is not
optimized. Therefore, it is appealing to have a new event-
participant planning strategy that satisfies spatio-temporal
conflict and travel expenditure constraints, and optimizes
the planning benefits on a global scale as well.

In this paper, we propose a new global event planning
problem considering both spatio-temporal conflict and travel

Table 1: Utility between Events and Users and Time of Events

u1 (59) u2 (29) u3 (51) u4 (9) u5 (33) Time

v1(1) 0.2 0.6 0.7 0.3 0.6 1-4p.m.

v2(3) 0.5 0.1 0.3 0.9 0.5 3-6p.m.

v3(4) 0.6 0.2 0.9 0.4 0.5 1-2p.m.

v4(2) 0.4 0.7 0.2 0.5 0.1 6-7p.m.

(a) (b)

Figure 1: Example 1.

expenditure constraints to maximize the overall satisfaction
of event participants. Specifically, given a set of events and
a set of users, each event is associated with a location and
a capacity, which is the maximum number of attendees al-
lowable, and each user is also associated with a location,
which is her/his initial location from which s/he travels to
the first attended event and also the final location to which
s/he returns from the last attended event. Each event is ad-
ditionally associated with a time period. Note that users can
only attend events that are non-overlapping in time. Each
user is additionally associated with a travel budget, which
is the maximum travel expenditure the user would like to
spend in order to attend the arranged events. There is also
a travel cost between each pair of events/users. Users may
have different preferences towards the events, each of which
is measured as a non-negative “utility value”. The satisfac-
tion of a user is defined as a linear combination of the sum
of utility values over her/his attended events. Our task is to
find an event-participant planning to maximize the overall
satisfaction of users, such that the capacity, spatio-temporal
conflict and travel budget constraints are satisfied. Similar
to [19][26], we also adopt the sum of satisfaction over all
users as the overall utility of the planning.

Example 1. Suppose we have four events(v1 − v4) and
five users(u1−u5) in an EBSN. Table 1 shows the utility val-
ues between each event-user pair, and also the time intervals
of the events. The capacities of the events and the budgets of
the users are shown in brackets, e.g. v1 has capacity 1, and
u4 has budget 9. Figure 1a shows the locations of users and
events, and we use Manhattan distance to calculate the cost
among them. Existing methods do not consider conflicts and
budgets and thus cannot yield a feasible planning. Figure 1b
shows a feasible schedule of u2.

Notice that for event planning, many other constraints can
be taken into consideration, for example, considering friends
who may want to attend the same event, reliability of event
organizers, etc. We choose to consider spatio-temporal con-
flict and travel cost as constraints when optimizing users’ in-
terests in this planning problem of EBSNs with the following
reasons. First, spatio-temporal conflicts among events are
prevalent in real-life EBSNs, which have to be taken into
consideration to make a feasible planning for users. Sec-
ond, travel cost is the fundamental constraint in a planning
problem. [6] indicates that venue constraints (e.g. loca-

Table 2: Summary of Symbol Notations

Notation Description
V = {v1, · · · , v|V |} Set of events
U = {u1, · · · , u|U|} Set of users

cv Capacity of v
tv1 Start time of v
tv2 End time of v
bu Travel budget of u

cost(vi, vj) Travel cost from vi to vj
cost(u, v) (cost(v, u)) Travel cost from u(v) to v(u)

µ(v, u) Utility value between v and u
Su Schedule of u

A = ∪u{Su} A planning for all users
Ω(A) (Ω(Su)) Total utility score of A (Su)

cr Conflict ratio of the set of events
fb Budget factor of the set of users

tions), time constraints (e.g. time budget and transit time
between venues) and users’ preferences are the three main
factors that must be taken into consideration in a planning
problem. Also, travel cost, in terms of time or money, is
the major constraint considered in many existing planning
problems [24][8][4].

The contributions of our work are summarized as follows.

• To the best of our knowledge, this is the first work
to formulate the Utility-aware Social Event-participant
Planning (USEP) problem, which conducts strategic
multiple-event planning for every user and considers
the constraints of spatio-temporal conflicts and travel
cost. We prove that this problem is NP-hard.

• We develop a greedy-based heuristic algorithm, which
is efficient but has no approximation guarantee, to ad-
dress the USEP problem.

• We present a two-step framework, which not only pro-
vides a 1

2
-approximation ratio but also includes a series

of optimization techniques to improve its space and
time efficiency.

• We verify the effectiveness and efficiency of the pro-
posed methods through extensive experiments on real
and synthetic datasets.

The rest of the paper is organized as follows. In Section
2, we formally formulate the USEP problem and prove its
NP-hardness. Section 3 presents a greedy-based heuristic
algorithm. Section 4 proposes a two-step framework and its
optimization techniques. Section 5 gives an empirical study
and Section 6 reviews the related work. Section 7 concludes
the paper.

2. PROBLEM STATEMENT
Let V be a set of events. For each v ∈ V , it is associ-

ated with a capacity cv, a location lv, and a time interval
[tv1 , t

v
2] that describes the starting and ending time of the

event. Notice that cv is any integer in Z+. For events that
may not have capacity constraints, such as firework shows,
we can simply set cv to an extremely large integer. U is a
set of users. For each u ∈ U , it is associated with a location
lu that is the initial and also the final location of the user,
and a travel budget bu. We take bu as an input parame-
ter, following the assumptions of other planning problems
[6][24][8][4]. We denote Su = {vu1 , vu2 , ..., vu|Su|} as the sched-
ule of arranged events in increasing time order for user u.
We call two events in a schedule neighboring if one will be
attended right after the other one finishes. The schedule is

feasible if and only if there is no time conflict among the
arranged events. And we define the feasibility of a schedule
formally as follows.

Definition 1 (Feasible Schedule). A schedule is fea-

sible if and only if t
vu
i

2 ≤ t
vu
i+1

1 , ∀1 ≤ i ≤ |Su| − 1.

Each user u has a utility value for each event v, denoted
as µ(v, u) ∈ [0, 1]. Notice that this value can be discovered
by existing data mining techniques [36]. However, calcula-
tion of the value is not our focus in this work. There is a
travel cost (e.g. time, money) between each pair of events
vi, vj . Without loss of generality, for any two events, sup-
pose their time order is tvi1 ≤ t

vj
1 . If vi and vj do not conflict

in time and users can attend vj on time after attending vi,
the travel cost cost(vi, vj) is a bounded non-negative inte-
ger. Otherwise, cost(vi, vj) = +∞. There is also travel cost,
cost(u, v) and cost(v, u), between a user and an event, which
is the travel cost from lu to lv and also that from lv return-
ing to lu. The cost between any event-event(event-user) pair
satisfies the triangle inequality.

We finally define our Utility-aware Social Event-participant
Planning (USEP) problem as follows.

Definition 2 (USEP Problem). Given a set of events
V and a set of users U and their associated attributes, find
a planning A = ∪u{Su} for the users to maximize the total
utility score Ω(A) of the planning A such that the following
constraints are satisfied:

1. Capacity constraint of events: no event is arranged to
users more than its capacity, i.e.

∑
u 1Su(v) ≤ cv, ∀v,

where 1Su(v) is the indicator function.

2. Budget constraint of users: no user needs to spend
more than her/his budget to complete the schedule,

i.e. cost(u, vu1)+
∑|Su|

i=2 cost(v
u
i−1, v

u
i)+cost(vu|Su|, u) ≤

bu, ∀u
3. Feasibility constraint: each user is arranged a feasible

schedule.

4. Utility constraint: no user is arranged events that s/he
is not interested in at all, i.e. µ(v, u) > 0,∀v ∈ Su, ∀u.

where the total utility score Ω(A) is defined as follows:

Ω(A) =
∑
u

∑
v∈Su

µ(v, u) (1)

Note that Ω(A) is the overall utility of the planning to-
wards both event organizers and users.

Remark1. Another setting of the USEP problem is that
instead of arranging events from the entire set V for a user,
each user u can provide a set Vu ⊆ V , only events in which
will be arranged to u. That is, Su ⊆ Vu. This variation
of the USEP problem can be reduced to the original USEP
problem by letting µ(v, u) = 0, ∀v ∈ V \ Vu.

Remark2. Another variance of travel cost is that there
is a participation fee feev for an event v. This variance
can be reduced to the original USEP problem by taking
cost as cost of money and letting cost′(u, v) = cost(u, v) +
feev and cost′(vi, vj) = cost(vi, vj)+feevj , where cost′(u, v)
(cost′(vi, vj)) is the new travel cost in this variance of USEP,
and cost(u, v) (cost(vi, vj)) is the original travel cost in the
original USEP problem.

The notations of symbols are summarized in Table 2. And
we have the following theorem that states the hardness of
USEP, the proof of which is in the Appendix.

Theorem 1. The USEP problem is NP-hard.

3. GREEDY-BASED ALGORITHM
In this section, we present a greedy-based heuristic al-

gorithm, RatioGreedy for the USEP problem. To make a
planning that has a high total utility score, we need to con-
sider both the utility value and the travel cost induced by
each event-user pair. On one hand, an event-user pair with
larger utility value will result in a higher total utility score
if the pair is included in the planning. On the other hand, a
pair with lower induced travel cost will possibly allow more
pairs to be added to the schedule of the user if the pair is
included in the planning. Thus, the RatioGreedy algorithm
is to consider the utility-cost ratio of each unarranged event-
user pair and add the pair with the largest ratio value into
the planning if it satisfies all the constraints.

Specifically, the utility-cost ratio for each event-user pair
that is not yet in A is defined as follows.

ratio(v, u) =
µ(v, u)

inc cost(v, u)
(2)

inc cost(v, u) =

cost(u, v) + cost(v, u) Su = ∅

cost(u, v) + cost(v, vu1) tv2 ≤ t
vu
1

1

−cost(u, vu1)

cost(vui , v) + cost(v, vui+1) t
vu
i

2 ≤ tv1 , t
v
2 ≤ t

vu
i+1

1 ,

−cost(vui , v
u
i+1) 1 ≤ i < |Su|

cost(vu|Su|, v) + cost(v, u) t
vu
|Su|

2 ≤ tv1
−cost(vu|Su|, u)

∞ otherwise

(3)

In Equation (2), inc cost(v, u) is the additional travel cost
that will be induced if the v is added to the current sched-
ule Su of u. Equation (3) defines inc cost(v, u) formally.
Specifically, when Su is empty, the additional cost is that
of traveling to v and returning to u if v is arranged for u.
When Su is non-empty, the additional cost depends on the
time order of Su if v is arranged for u, which is determined
by the time interval of v and also those of the events that
are already in Su. If v will the first event to be attended
when it is added to the current schedule, the additional cost
is that of traveling from u to v and then to vu1 subtracting
the cost traveling from u to vu1 (since u will no longer travel
to vu1 directly if v is added to the schedule), where vu1 is the
first event to be attended in the current schedule. If v will
be attended after vui and before vui+1, where vui and vui+1 are
some neighboring events in Su, the additional cost is that
of traveling from vui to v and then to vui+1 subtracting the
cost from vui to vui+1 (since u will no longer travel from vui
to vui+1 directly if v is added to the schedule). Similarly, if
v will be the last event to be attended, the additional cost
is that of traveling from vu|Su| to v and then retuning to u
subtracting the cost from vu|Su| to u (since u will not long
return to her/his initial location after attending vu|Su| if v is
added to the schedule), where vu|Su| is the last event to be
attended in the current schedule.

The detailed algorithm is as follows. Initially, the planning
A is empty, i.e. Su = ∅,∀u ∈ U . We maintain a heap H for
storage of unarranged event-user pairs. At each iteration,
we extract a pair (v, u) with the largest ratio value from H
and add it to A if possible. Initially, for each vi ∈ V , we find
a uvi ∈ U such that ratio(vi, uvi) ≥ ratio(vi, u

′) for all u′

Algorithm 1: RatioGreedy

input : V,U, {cv}, {µ(v, u)}, {tv1 , tv2}, {bu}, {cost}
output: A feasible planning A

1 Su ← ∅, ∀u;
2 H ← ∅;
3 foreach v do
4 uv ← arg maxu|Su={v} is valid ratio(v, u);
5 Push (v, uv) into H if uv∃;
6 foreach u do
7 vu ← arg maxv|Su={v} is valid ratio(v, u);
8 Push (vu, u) into H if vu∃ and (vu, u) /∈ H;

9 while H 6= ∅ do
10 Pop (v, u) with the largest ratio(v, u) from H;
11 Add v into Su if {v} ∪ Su is valid;
12 if v is not full of capacity then
13 uv ←

arg maxu′|Su′={v}∪Su′ is valid and v/∈Su′
ratio(v, u′);

14 Push (v, uv) into H if uv∃ and (v, uv) /∈ H;

15 foreach original (vk, u) ∈ H do
16 Remove (vk, u) from H if inc cost(vk, u)

changes, continue otherwise;
17 uvk ←

arg maxu′|Su′={vk}∪Su′ is valid and vk /∈Su′
ratio(vk, u

′);

18 Push (vk, uvk) into H if uvk∃ and (vk, uvk) /∈ H;

19 vu ←
arg maxv′|Su={v′}∪Su is valid and v′ /∈Su ratio(v

′, u);
20 Push (vu, u) into H if vu∃ and (vu, u) /∈ H;

21 A← ∪u{Su};
22 return A

whose schedule {vi} satisfies all the constraints. If there are
multiple uvi ’s whose ratio values are the same, we pick the
one with the least inc cost. We also find a vuj for each uj ∈
U in a similar way. Each pair (vi, uvi)((vuj , uj)) is pushed
into H. If for some i and j, vi = vuj and uvi = uj , only one
pair will be in H. Whenever a pair (v, u) is popped from H,
we update H as follows. If v is not yet full of capacity, we
find the next uv such that ratio(v, uv) ≥ ratio(v, u′) for all
u′ such that v is not yet in Su′ and the schedule {v} ∪ Su′

satisfies all the constraints. Again, if there are multiple u’s
whose ratio values are the same, we pick the one with the
least inc cost. For u, we also find its corresponding vu in a
similar way. The new found pair(s) will be pushed into H.
If there are some other pairs (vk, u) in H that are incident
to u, since the schedule of u may have been updated and
thus inc cost(vk, u) may have changed, we need to find a
possibly new uvk for each vk to ensure that for vk, the pair
(vk, uvk) that has the largest ratio value and satisfies all the
constraints is in H. Therefore, we update the uvk for each
vk and also update H accordingly. The whole procedure
terminates when no more feasible pair can be pushed into
H and H is empty.

The procedure of the RatioGreedy algorithm is illustrated
in Algorithm 1. In lines 2-8, we initialize H by finding a
valid event-user pair with the largest ratio value for each
event(user). In lines 9-20, we repetitively pop the pair (v, u)
with the largest ratio value from H, add the pair to the

Table 3: Example 2

u1 u2 u3 u4 u5

v1 0.011(18) 0.15(4) 0.175(4) 0.05(6) 0.0375(16)

States of H
(v4, u1) : 0.2(2), (v1, u3) : 0.175(4),

After (v1, u2) : 0.15(4), (v3, u3) : 0.075(12),
Initialization (v1, u4) : 0.05(6), (v1, u5) : 0.0375(16),

(v2, u5) : 0.023(22)
(v1, u3) : 0.175(4), (v1, u2) : 0.15(4),

After 1st (v3, u3) : 0.075(12), (v1, u4) : 0.05(6),
Iteration (v1, u5) : 0.0375(16), (v3, u1) : 0.0375(16),

(v4, u2) : 0.035(20), (v2, u5) : 0.023(22)

planning if possible and update H. In lines 12-14 and lines
19-20, we find a new valid event-user pair with the largest
ratio value for v and u respectively. In lines 15-18, we update
the elements in H that contain u in case that the inc cost’s
and thus the ratio values for such elements have changed.
The iteration terminates when H is empty.

Example 2 (RatioGreedy). Back to our running ex-
ample in Example 1. Initially, H is empty. In the sec-
ond row of Table 3, we present the ratio values between
v1 and different users and also the inc cost (in brackets).
As pair (v1, u3) is valid and has the largest ratio value, we
push (v1, u3) into H. We continue the initialization step,
and present the state of H after initialization in Table 3,
where we present the ratio value of each event-user pair in
H and also its inc cost (in bracket). Then during the 1st
iteration, the pair v4, u1 is popped from H as it has the
largest ratio value 0.2. Then we add v4 to Su1 , and up-
date H, the state of which is presented in Table 3. The
procedure continues until H is empty, and we have the fol-
lowing planning Su1 = {v3, v4}, Su2 = {v3, v4}, Su3 = {v1}
and Su5 = {v3, v2}, which has total utility score 3.6.

Complexity analysis. In RatioGreedy, initializing H
takes O(|V ||U |) time as we scan through each event-user
pair. Then during each iteration, it takes O(|Su|) time to
check the validity of the popped pair and O((|V |+ |U |)|Su|)
time to push new pairs into H. Also, as there are at most |V |
event-user pairs in H that are incident to u, it takes at most
O(|V ||U ||Su|) additional time to update the elements in H.
Since there are at most |V ||U | event-user pairs, the number
of iterations is O(|V ||U |). Thus, the overall time complexity
of RatioGreedy is O(|V ||U |(|V | + |U | + |V ||U |)|Su|) in the
worst case. The major space consumption of RatioGreedy
comes from H and Su. Thus, the space complexity of Ra-
tioGreedy is O(|V ||U |).

4. A TWO-STEP APPROXIMATION
FRAMEWORK

In this section, due to the NP-hardness of the USEP prob-
lem, we present a two-step approximate solution framework.
Based on the framework, we present a Decomposed Dynamic
Programming (DeDP) approximation algorithm with approx-
imation ratio 1

2
. To improve the space and time efficiency

and also the effectiveness of the DeDP algorithm, we fur-
ther present techniques that optimize the DeDP algorithm.
Finally, we present a DeGreedy algorithm following the two-
step approximation solution framework, which is faster than
the DeDP algorithm but returns a planning with lower total
utility score.

4.1 Preliminary
We first introduce some background of the framework.

Specifically, our framework is based on the decomposition
idea of Local Ratio Theorem[3][7], which is stated as follows.

Theorem 2 (Local Ratio[3]). Let max f(x) = w · x
be the objective function, where w ∈ Rn is a weight vector,
and x ∈ Rn is a solution vector satisfying a set of constraints
C. Let w = w1 + w2, and x ∈ Rn be an r-approximate
solution w.r.t. w1 ∈ Rn and w2 ∈ Rn, then x is also an
r-approximate solution w.r.t. w.

Theorem 2 indicates that we can decompose the weight
function and thus the USEP problem into a set of simpler
problems and aggregate the solutions of the simpler prob-
lems to obtain a final solution for the USEP problem. De-
tails of the algorithm are presented in the following.

4.2 DeDP Algorithm
In the DeDP algorithm, the main idea is to first decom-

pose the USEP problem into |U | problems following [3][7],
where in each of the |U | problems we design a dynamic pro-
gramming algorithm to find a feasible schedule for a user u
that can maximize the total utility score of the schedule. In
the second step, we combine the solutions of each user and
resolve the case where certain constraints are violated.

4.2.1 First Step
In the first step, we decompose the original USEP prob-

lem into |U | problems. First, we sort the events in V in
non-descending order of tv2 , and denote the i-th element
in the sorted list as vi. That is, t

vj
2 ≤ tvi2 , ∀j < i. Sec-

ond, we construct a set of pseudo-events with cardinality
cvi for each vi. Specifically, for each vi ∈ V with capac-
ity cvi , we construct a set of pseudo-events {vi,k} where
1 ≤ k ≤ cvi , and each vi,k is identical to vi except that
cvi,k = 1, ∀1 ≤ k ≤ cvi . Notice that if cvi > |U |, we simply
change cvi to |U |. Thus, cvi ≤ |U |, ∀vi. When arranging
events for users, instead of arranging vi to users directly,
we arrange one of the pseudo-events {vi,k} to a user. Each
vi,k is associated with a utility value µ(vi,k, u) w.r.t. each
user u, where µ(vi,k, u) = µ(vi, u),∀1 ≤ k ≤ cvi initially.
The values of µ(vi,k, u) will be decomposed as we solve the
problem, details of which will be presented shortly. Finally,
after constructing the pseudo-event sets, we decompose the
USEP problem into |U | problems and iteratively solve each
decomposed problem. In the r-th decomposed problem, we
find a schedule for user ur with a dynamic programming
algorithm, and update the values of µ(vi,k, u) accordingly.

More specifically, in the r-th iteration, where 1 ≤ r ≤ |U |,
we find a schedule for user ur. For easy illustration, we
denote µr(vi,k, u) as the value of µ(vi,k, u) when we start to
process the r-th user, which is updated after the last ((r−1)-
th) iteration. Particularly, µ1(vi,k, u) = µ(vi,k, u) initially.
Then for each event vi, we first find from its pseudo-event
set {vi,k} the element that has the largest updated utility
value w.r.t. ur, i.e. maxk µ

r(vi,k, ur), denoted as v̂i (ties
are broken arbitrarily). Let Vr = {v̂i|µr(v̂i, ur) > 0}. Thus,
any v̂i with non-positive utility value is excluded from Vr.
We next find a schedule for user ur from Vr with a dynamic
programming algorithm.

Lemma 1. For any vi such that cost(u, vi)+cost(vi, u) >
bu, it cannot be included in any valid schedule of u.

Lemma 1, the proof of which is in the Appendix, indicates
that we can remove events with cost(ur, v̂i) + cost(v̂i, ur) >
bur from Vr as they cannot be in the schedule of ur. De-
note V ′r as the resulted set of events. Then in the dynamic
programming algorithm, we scan through each pseudo-event
v̂i ∈ V ′r , and find the best utility score we can obtain with
v̂i being the last event to attend in the schedule. Let Si,T

ur
=

{vur,i,T } (simplified as Si,T = {vi,T }) denote the schedule
for ur with v̂i being the last event to attend and T being
the total travel cost of completing the schedule at v̂i, i.e.

T = cost(ur, v
i,T
1) +

∑|Si,T |
j=2 cost(vi,Tj−1, v

i,T
j) and vi,T|Si,T | is

v̂i. Let Ω(i, T) be the largest utility score of Si,T . And we
have the following equation to compute Ω(i, T).

Ω(i, T) =

µr(v̂i, ur) T = cost(ur, v̂i)

max1≤l≤li

{Ω(l, T − cost(v̂l, v̂i)) T ≥ cost(v̂l, v̂i) and

+µr(v̂i, ur)} T + cost(v̂i, ur) ≤ bur

0 otherwise

(4)

In Equation (4), li is the largest index l such that t
vl
2 ≤ t

vi
1 .

Recall that t
vj
2 ≤ tvi2 , ∀j < i. Therefore, ∀l > li, we have

t
vl
2 > tvi1 and thus v̂i cannot be attended if v̂l is in the

schedule of ur. By computing Ω(i, T), we can then find a

schedule Ŝur that corresponds to the largest Ω(i, T)(∀i, 0 ≤
T ≤ bur) value for ur.

After finding schedule Ŝur , we finally update the val-

ues of µr as follows. If the schedule Ŝur contains pseudo-
event v̂i (recall that v̂i is one of {vi,k}), µr+1(v̂i, uj) is up-
dated as µr(v̂i, uj) − µr(v̂i, ur) for all j > r. In addition,
µr+1(vi,k, ur) = 0, ∀i, k. The other µr+1 values are the same
as their corresponding µr. The intuition is to ensure that
when v̂i is arranged to ur, v̂i will be rearranged to uj(j > r)
only if µj(v̂i, uj) > 0 and thus µ(vi, uj) > µ(vi, ur) initially.

Then in our second step, v̂i will be removed from Ŝur in such
case to ensure that v̂i is only arranged to one single user.
Details of this step will be described shortly. After updating
the values of µr(vi,k, u), we proceed to the next iteration to
find a schedule for user ur+1 until r = |U |.

The procedure of finding individual schedule for each user
is presented in Algorithm 2. In line 1, we construct V ′r ac-
cording to Lemma 1. In lines 2-9, we compute Ω(i, T) ac-
cording to Equation (4). In lines 10-11, we find the schedule

with the largest Ω(i, T) value as Ŝur .

4.2.2 Second Step
In the second step, we resolve the case where vi,k is ar-

ranged to multiple users, which violates the capacity con-
straint of vi,k and thus also that of vi, since every vi,k must
be arranged in this case. Specifically, we scan through ur in
the order of r = |U |, |U | − 1, ..., 1. For r = |U |, Sur = Ŝur .
And for each r < |U |, any vi,k that is already in ∪j>rSuj is

removed from Ŝur , which results in Sur as the final schedule
for ur. After this step, we obtain a planning where each vi,k
is arranged to only one user and thus the capacity constraint
of vi is satisfied. The other three constraints (i.e. bud-
get constraint, feasibility constraint and utility constraint),
which are ensured to be satisfied in the first step, are not af-
fected by the removal of events from a schedule. Therefore,
the resulted planning of the DeDP algorithm is feasible.

Algorithm 2: DPSingle

input : Vr, ur, µ
r, {tv1 , tv2}, bur , {cost}

output: A feasible schedule Ŝur

1 V ′r ← {v ∈ Vr|cost(ur, v) + cost(v, ur) ≤ bur};
2 for i← 1 to |V ′r | do
3 Ω(i, cost(ur, v̂i))← µr(v̂i, ur);
4 path(i, cost(ur, v̂i)← 0;
5 for l← 1 to li do
6 foreach T s.t. Ω(l, T) > 0 do
7 if T + cost(v̂l, v̂i) + cost(v̂i, ur) ≤ bur and

Ω(l, T) + µr(v̂i, ur) > Ω(i, T + cost(v̂l, v̂i))
then

8 Update Ω(i, T + cost(v̂l, v̂i));
9 path(i, T + cost(v̂l, v̂i))← l;

10 Find the largest Ω(i, T);

11 Construct Ŝur according to path(i, T);

12 return Ŝur

Algorithm 3: DeDP

input : V,U, {cv}, {µ(v, u)}, {tv1 , tv2}, {bu}, {cost}
output: A feasible planning A

1 ∀vi s.t. cvi > |U | : cvi ← |U |;
2 µ1(vi,k, uj)← µ(vi, uj), ∀1 ≤ i ≤ |V |, 1 ≤ k ≤ cvi , 1 ≤
j ≤ |U |;

3 for r ← 1 to |U | do
4 Vr ← {v̂i|µr(v̂i, ur) > 0};
5 Ŝur ← DPSingle (Vr, ur, µr, {tv1 , tv2}, bur , {cost});
6 Update µr;

7 for r ← |U | downto 1 do

8 Sur ← {vi|the corresponding v̂i ∈ Ŝur \ (∪j>rŜuj)};
9 A← ∪u{Su};

10 return A

4.2.3 Summary
The main procedure of the DeDP algorithm is summarized

in Algorithm 3. In line 1, we temporally let cvi ≤ |U |, ∀vi ∈
V . In line 2, we initialize µ1. In lines 3-6, which is the first
step of DeDP, we decompose the USEP problem into |U |
problems by finding a schedule for each ur. In line 4, we
construct the set Vr using the selected pseudo-events. We
find the schedule for ur using Algorithm 2 and update µr in
lines 5-6. In lines 7-9, which is the second step of DeDP, we
resolve the case where vi,k is contained in multiple schedules.

Example 3. Back to our running example in Example 1.
Note that in this example, the sorted list of V is v3, v1, v2, v4,
and we still use the original subscript of v’s instead of re-
ferring to v3 as v1, v1 as v2 etc. as we do in the algorithm.
In the first iteration, the values of µ1 are identical to those
of µ. We present the selected pseudo-events and their cor-
responding µ1 values (in bracket) in the second row of Table
4. We then construct V ′1 , which is presented in Table 5, and
find a schedule for u1 using dynamic programming, events
of which are shown in bold font in Table 5. Then the values
of µ2 are updated. We show the selected pseudo-events and
their updated µ2 values (in bracket) in the third row of Ta-
ble 4. After updating µ2, we then proceed to find a schedule

Table 4: Updated µr of Example 3

v̂1 v̂2 v̂3 v̂4
u1 v1,1(0.2) v2,1(0.5) v3,1(0.6) v4,1(0.4)
u2 v1,1(0.6) v2,2(0.1) v3,2(0.2) v4,1(0.7)
u3 v1,1(0.1) v2,2(0.3) v3,2(0.9) v4,2(0.2)
u4 v1,1(-0.3) v2,3(0.9) v3,3(0.4) v4,2(0.5)
u5 v1,1(0) v2,3(0.5) v3,3(0.5) v4,2(0.1)

Table 5: Results of First Step of Example 3

User V ′r
u1 v3,1, v1,1, v2,1, v4,1
u2 v3,2, v1,1, v2,2, v4,1

u3 v3,2, v1,1, v2,2, v4,2
u4 ∅
u5 v3,3, v2,3, v4,2

for u2. After the first step, the initial planning is shown in
bold font in Table 5. Then after the second step, we have
the final planning: Su1 = {v3, v2}, Su2 = {v1, v4}, Su3 =
{v3, v2}, Su5 = {v3, v2}. The total utility score is 4.6.

Complexity analysis. In the first step of DeDP, the
number of iterations is |U |. Then in each of the decomposed
|U | problems, it takes O(|V |maxv{cv}) time to construct
Vr and O(|V |2 maxu{bu}) time to compute each Ω(i, CT)

value in the worst case. Constructing Ŝur takes O(|V |) time.
Updating µr takes O(|V ||U |)time. Therefore, the first step
of DeDP takes O(|U |(|V |2 maxu{bu} + |V ||U |)) time. The
second step of DeDP takes O(|V ||U |) time to obtain the
final schedules. Thus, the overall time complexity of DeDP
is O(|U |(|V |2 maxu{bu}+ |V ||U |)).

The major space consumption of DeDP comes from stor-
ing values of µr, which takes O(|V ||U |maxv{cv}) space.
Computing Ω(i, CT) takesO(|V |maxu{bu}) space, and stor-
ing schedules of users takes O(|V ||U |) space. Thus, the
overall space complexity of DeDP is O(|V ||U |maxv{cv} +
|V |maxu{bu}).

Approximation ratio. We next present the approxima-
tion ratio of DeDP with the following theorem, the proof of
which is in the Appendix.

Theorem 3. DeDP has approximation ratio of 1
2

, i.e.

Ω(A) ≥ 1
2
Ω(A?), where A is the planning returned by DeDP,

and A? is the optimal planning.

4.3 Optimizing DeDP Algorithm
Note that though the DeDP algorithm returns a plan-

ning with guaranteed approximation ratio of 1
2
, it has the

following issues. First, notice that storing values of µr re-
quires O(|V ||U |maxv{cv}) space, which is infeasible espe-
cially when |U | and cv are large. Also, updating values of
µr takes time, which reduces the efficiency of DeDP. Second,
since some events may be removed from some users’ sched-
ules, it is possible that the removed events may be added
to some schedules to improve the resulted planning. In this
subsection, we address these two issues and propose two en-
hanced algorithms, DeDPO and DeDPO+RG, which still
have guaranteed approximation ratio of 1

2
.

4.3.1 Optimizing Space and Speed
We first optimize the space consumption of DeDP by re-

ducing the space of µr, which is the major space consump-
tion of DeDP. Reducing µr can also speed up DeDP. We
call this improved algorithm DeDPO. We first present the
following lemma, the proof of which is in the Appendix.

Algorithm 4: DeDPO

input : V,U, {cv}, {µ(v, u)}, {tv1 , tv2}, {bu}, {cost}
output: A feasible planning A

1 ∀vi s.t. cvi > |U | : cvi ← |U |;
2 select(vi, k)← 0, ∀1 ≤ i ≤ |V |, 1 ≤ k ≤ cvi ;
3 for r ← 1 to |U | do
4 for i← 1 to |V | do
5 k′ ← arg maxk({µ(vi, ur)|select(vi, k) = 0} ∪

{µ(vi, ur)−µ(vi, select(vi, k))|select(vi, k) > 0});
6 v̂i ← vi,k′ ;
7 µ′(v̂i)← µ(vi, ur) if select(vi, k

′) = 0 or
µ(vi, ur)− µ(vi, select(vi, k

′)) otherwise;

8 Vr ← {v̂i|µ′(v̂i) > 0};
9 Ŝur ← DPSingle (Vr, ur, µ′, {tv1 , tv2}, bur , {cost});

10 Update select;

11 Sur ← ∅, ∀1 ≤ r ≤ |U |;
12 for i← 1 to |V | do
13 for k ← 1 to cvi do
14 Sselect(vi,k) ← Sselect(vi,k) ∪ {vi} if

select(vi, k) > 0;

15 A← ∪u{Su};
16 return A

Lemma 2. For a pseudo-event vi,k, let ur1 , ur2 , ..., urn be

the list of users who have vi,k in their schedules Ŝurj
, where

1 ≤ r1 < ... < rj < ... < rn ≤ |U |. It holds that ∀l s.t.
1 ≤ l ≤ r,
µ
l
(vi,k, ur) =

{
µ(vi, ur) 1 ≤ l ≤ r1
µ(vi, ur)− µ(vi, urjl

) rjl < l ≤ rjl+1, jl ≥ 1

(5)

Notice that the values of µr(vi,k, ur) are used only when
DeDP is performing the r-th iteration in the first step. Lemma
2 states that instead of keeping tracking of and updating
µr(vi,k, ur) during the whole procedure of the first step of
DeDP, we only need to know who is the last user to have vi,k
in her/his schedule Ŝ when DeDP starts to process the r-th
user in the first step, which has similar consideration as [7].
Therefore, we can remove storage of µr values by defining
a new |V | × cv array select(vi, k), where select(vi, k) keeps

tracking of the last user to have vi,k in her/his Ŝ before
execution of the r-th iteration of the first step. That is,
select(vi, k) = max{j|1 ≤ j < r, vi,k ∈ Ŝuj}.

The procedure of the improved algorithm DeDPO is illus-
trated in Algorithm 4. In line 2, we initialize select(vi, k).
In lines 4-7, we find the pseudo-event with the largest util-
ity value for each vi as we do in DeDP, and calculate the
updated µ values, which are stored in a temperate array
µ′. Note that µ′(v̂i) is equivalent to µr(v̂i, ur) in DeDP. We
construct Vr in line 8 and find an optimal schedule for ur

based on µ′ in line 9. In line 10, we update the values of
select(vi, k) with ur if vi,k is included in Ŝur . In lines 11-14,
we construct the planning by arranging vi to the last user
who has vi,k in Ŝ, which is already recorded in select(vi, k).
Thus, step 2 of DeDPO is equivalent to step 2 of DeDP.

Complexity analysis. DeDPO improves the time ef-
ficiency of DeDP by saving O(|V ||U |) time to update the
values of µr in each iteration. Therefore, the first step of
DeDPO takes O(|U |(|V |2 maxu{bu}+ |V |maxv{cv})) time.
The second step of DeDP takes O(|V |maxv{cv}) time to ob-
tain the final schedules. Thus, the overall time complexity

of DeDPO is O(|U |(|V |2 maxu{bu}+ |V |maxv{cv})), which
reduces that of DeDP by O(|U ||V |(|U | −maxv{cv})).

DeDPO improves the space consumption of DeDP by sav-
ing O(|V ||U |maxv{cv}) space to store values of µr while
introduces O(|V |maxv{cv}) extra space to store values of
select. Therefore, the overall space complexity of DeDPO
is O(|V |maxv{cv}+ |V |maxu{bu}+ |V ||U |), which reduces
that of DeDP by one order of magnitude.

4.3.2 Optimizing Utility
Notice that in second step of DeDPO (DeDP), some of

the events may not be full in terms of capacity, i.e. some of
the select(vi, k) may be 0 for some vi. Also. some arranged

events in Ŝ of some users may be removed in the second step,
and thus such users may still have enough budget to attend
some more events. Therefore, our second optimization for
DeDPO (DeDP) is to improve the total utility score of the
planning by adding events whose capacity are not yet full to
schedules of users whose budgets are not yet exceeded.

Specifically, after running the DeDPO(DeDP) algorithm,
we obtain an initial planning A. We construct a set of
events V ′ = {v|v is not full of capacity}, including all the
events that are not yet full of capacity w.r.t. A. We next
run RatioGreedy algorithm with input V ′ and U to add
more arranged pairs into A if possible. Note that when run-
ning RatioGreedy (Algorithm 1), in lines 1-8, the inc cost
of each event-user pair should be calculated by taking the
existing schedules of A into consideration. We call this al-
gorithm DeDPO+RG. Note that the planning A′ returned
by DeDPO+RG is still a 1

2
-approximate solution.

4.4 DeGreedy Algorithm
Note that the DeDP algorithm, even the DeDPO algo-

rithm, could be time-consuming since in each decomposed
problem of the first step, it takes O(|V |2 maxu{bu}) time
to find an optimal schedule for the user using the dynamic
programming algorithm. Thus, in this subsection, we intro-
duce the DeGreedy algorithm, where instead of using the
dynamic programming algorithm to solve each decomposed
problem, we use a ratio-based greedy algorithm to find a
suboptimal schedule for each user in a faster way.

More specifically, the framework of DeGreedy is the same
as that of DeDPO, as we use the techniques of DeDPO to
improve the space and time efficiency of DeGreedy. The
only difference is that we find a schedule for user ur in the
r-th iteration of the first step in a greedy way. We then
only describe the details of the greedy algorithm to find a
schedule for ur. Initially, Ŝur is empty. We then iteratively
add a valid event v with the largest ratio score, which is
defined in Equation (2), into Ŝur . The validity of v is that

adding v into Ŝur does not violate the travel budget and
schedule feasibility constraints of ur. Note that the utility
constraint is ensured to be satisfied when we construct Vr.
We maintain a heap H to keep tracking of feasible event
candidates and pop the one with the largest ratio score from
H and add it to Ŝur during each iteration.

The details of maintaining H are as follows. Initially, H
is empty. We then scan through each pseudo-event in V ′r ,
which is constructed as in Algorithm 2, and push the one
with the largest ratio score into H. Each time an pseudo-
event v̂i is popped from H and added to Ŝur , we update
H as follows. Let pi be the index of the precedent of v̂i
in Ŝur , and si be index of the successor of v̂i in Ŝur if

Algorithm 5: GreedySingle

input : Vr, ur, µ
r, {tv1 , tv2}, bur , {cost}

output: A feasible schedule Ŝur

1 V ′r ← {v ∈ Vr|cost(ur, v) + cost(v, ur) ≤ bur};
2 v ← arg maxv∈V ′r ratio(v, ur);

3 Push v into H;

4 Ŝur ← ∅;
5 while H 6= ∅ do
6 Pop v̂i with the largest ratio(v̂i, ur) from H;

7 Add v̂i into Ŝur ;

8 if v̂i is the first in Ŝur then
9 v′ ← arg maxvalid v∈{v̂1,··· ,v̂i−1}∩V ′r ratio(v, ur);

10 else
11 v′ ←

arg maxvalid v∈{v̂pi+1,··· ,v̂i−1}∩V ′r ratio(v, ur);

12 Add v′ into H if v′∃;
13 if v̂i is the last in Ŝur then
14 v′ ← arg maxvalid v∈{v̂i+1,··· ,v̂|V |}∩V ′r ratio(v, ur);

15 else
16 v′ ←

arg maxvalid v∈{v̂i+1,··· ,v̂si−1}∩V ′r ratio(v, ur);

17 Add v′ into H if v′∃;
18 return Ŝur

they exist. That is, ur attends v̂pi , v̂i and v̂si respec-

tively in order w.r.t. Ŝur . We then scan through each
pseudo-event in {v̂pi+1, v̂pi+2, · · · , v̂i−1} ({v̂1, v̂2, · · · , v̂i−1}
if v̂i is the first event in Ŝur), and push the one that is
valid and has the largest ratio score into H. Similarly, we
scan through each pseudo-event in {v̂i+1, v̂i+2, · · · , v̂si−1}
({v̂i+1, v̂i+2, · · · , v̂|V |} if v̂i is the last event in Ŝur), and
push the one that is valid and has the largest ratio score
into H. The following lemma states that the way we main-
tain H ensures that we pop a valid event with the largest
ratio score among all the other valid event candidates from
H each time, the proof of which is in the Appendix.

Lemma 3. Let v be the latest event popped from H. It
holds that ratio(v, ur) = maxvalid v′∈V ′r\Ŝur

ratio(v′, ur).

The main procedure of DeGreedy is the same as that of
Algorithm 4, except that in line 9 of Algorithm 4, we call
procedure GreedySingle instead to find the schedule Ŝur .
The procedure of GreedySingle is illustrated in Algorithm
5. In line 1, we construct V ′r as we do in DeDPO. In lines
2-3, we find a valid event with the largest ratio value and
push it into H. In lines 5-17, we keep popping events from
H and updating Ŝur and H until H is empty.

Example 4. Back to our running example in Example 1.
DeGreedy returns the following planning after the first step:
Ŝu1 = {v3,1, v4,1}, Ŝu2 = {v1,1, v4,2}, Ŝu3 = {v3,2, v2,1}, Ŝu5 =
{v3,3, v2,2}. After the second step, the final planning is as
follows: Su1 = {v3, v4}, Su2 = {v1, v4}, Su3 = {v3, v2}, Su5 =
{v3, v2}. The total utility score is 4.5.

Notice that similar to DeDPO+RG, we can also run the
RatioGreedy algorithm after the second step of the DeGreedy
algorithm to improve the total utility score if possible. We
call this improved algorithm DeGreedy+RG.

Table 6: Real Datasets

City |V | |U | Mean of cv cr
Vancouver 225 2012
Auckland 37 569 50 0.25
Singapore 87 1500

Table 7: Synthetic Datasets

Factor Setting
|V | 20, 50, 100, 200, 500
|U | 100, 200, 500, 1000, 5000

µ(v, u) Uniform, Normal(0.5, 0.25), Power: 0.5, 4
Mean of cv 10, 20, 50, 100, 200

Distributions of cv Uniform, Normal
fb 0.5, 1, 2, 5, 10

Distributions of bu Uniform, Normal
cr 0, 0.25, 0.5, 0.75, 1

Scalability |U | = 10K, 20K, 30K, 40K, 50K, 100K

Complexity analysis. The difference between DeDPO
and DeGreedy is GreedySingle. In GreedySingle, it takes
O(|V |) time to update H each time, and the number of
iterations is at most |V |. Therefore, the overall complexity
of DeGreedy is O(|U |(|V |2 + |V |maxv{cv})), and the space
complexity is O(|V |maxv{cv}+ |V ||U |).

5. EXPERIMENTAL STUDY

5.1 Experiment Setup
Parameters. We first define a conflict ratio cr to reflect

the conflicting degree of events. Specifically, conflict ratio is
the percentage of pairs of events that are spatio-temporally
conflicting with each other. The time and cost values are
generated based on the conflict ratio.

We next use a budget factor fb to control the budget of
user bu. Specifically, given fb, which is universal for all
users, for each user u, the value of bu is generated uniformly
in [2 minv cost(u, v), 2 minv cost(u, v) +mid× fb × 2], where
mid = 1

2
(maxv,v′ cost(v, v

′) + minv,v′ cost(v, v
′)).

Datasets. We use the Meetup dataset from [21] as real
dataset. In the dataset, each user is associated with a set
of tags and a location. Each event in the dataset is also
associated with a location, and we use the tags of the group
who creates the event as the tags of the event itself since
the events themselves do not have tags. We use the similar-
ity of the tags between an event and a user as their utility
scores[36]. Since it is unlikely for a user living in a city to
attend a meet-up event held in another city, we focus on the
event/users pairs located in the same city. We select three
popular cities, Vancouver, Auckland and Singapore, and ex-
tract events and users located within the area around each
city. We use the Manhatan distance between a user and
an event or that between two events as their travel cost in
our experiments. We generate capacities of events following
Uniform distribution, and generate the time and budgets
with varying parameters described previously. TABLE 6
presents the statistics and configuration. We also use syn-
thetic dataset for evaluation. We generate the utility values
following Uniform, Normal and Power distributions respec-
tively. The statistics and configuration of synthetic data are
illustrated in TABLE 7, where we mark our default settings
in bold font.

Notice that spatio-temporal conflicts, capacities and travel
budgets are also generated syntactically for real datasets.
The reason is that though such information is often con-
tained or can be inferred from the description of events on
Meetup, it is not contained in the dataset of [21].

2050 100 200 500
0

5000

10000

15000

20000

25000

|V|

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(a) Utility of varied |V |

100200 500 1000 5000
0

1000

2000

3000

4000

5000

6000

|U|

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(b) Utility of varied |U |

1020 50 100 200
0

5000

10000

15000

mean c
v

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(c) Utility of varied cv

0 0.25 0.5 0.75 1
3400

3600

3800

4000

4200

4400

Conflict Ratio

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(d) Utility of varied cr

20 50 100 200 500
0

100

200

300

400

500

600

|V|

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(e) Run time of varied |V |

100200 500 1000 5000
0

1

2

3

4

5

6

7

8

|U|

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(f) Run time of varied |U |

1020 50 100 200
0

5

10

15

20

25

30

mean c
v

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(g) Run time of varied cv

0 0.25 0.5 0.75 1
0

2

4

6

8

Conflict Ratio

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(h) Run time of varied cr

20 50 100 200 500
0

100

200

300

400

500

600

|V|

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(i) Memory of varied |V |

100200 500 1000 5000
0

20

40

60

80

100

120

|U|

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(j) Memory of varied |U |

1020 50 100 200
0

50

100

150

200

250

300

350

400

mean c
v

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(k) Memory of varied cv

0 0.25 0.5 0.75 1
0

20

40

60

80

100

120

Conflict Ratio

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(l) Memory of varied cr

Figure 2: Results on varied |V |, |U |, mean of cv, and conflict ratio.

We evaluate RatioGreedy, DeDP, DeDPO, DeDPO+RG,
DeGreedy, and DeGreedy+RG in terms of total utility score,
running time and memory cost, and study the effect of differ-
ent parameters on the performance of the algorithms. The
algorithms are implemented in C++, and the experiments
were performed on a Windows 7 machine with Intel i7-2600
3.40GHZ 8-core CPU and 8GB memory.

5.2 Experiment Results
Effect of cardinality of V . We first study the effect

of |V |. The first column of Figure 2 presents the results
when |V | varies from 20 to 500. In terms of total utility
scores, we can first observe that DeDP-based algorithms, i.e.
DeDP(DeDPO) and DeDPO+RG, perform the best, while
the heuristic-based RatioGreedy algorithm achieves the low-
est utility scores. Note that the difference between two total
utility scores can be considered as at least how many more
interesting events are suggested to users. For example, the
difference of 4500 and 5000 when |V | = 100 indicates that
in the planning with utility score of 5000, at least 500 more
interesting events are suggested to users compared to the
one with total utility score of 4500. Second, DeGreedy+RG
enhances DeGreedy to a certain degree, while DeDPO+RG
does not enhance DeDPO significantly. The reason is that
DeGreedy returns a worse planning than DeDPO does, and
thus there could be more available event-user pairs in the
planning returned by DeGreedy, which increases the possi-
bility that the enhanced algorithm can add some more event-
user pairs to the original planning. Third, we can observe
that the utility scores increase as |V | increases, which is nat-
ural as there are more events available for users when |V |

increases. As for running time, we can observe that DeDP-
based algorithms run slower than other algorithms do, es-
pecially when |V | is as large as 500. We can also see that
DeDPO is slightly faster than DeDP as expected. Finally,
in terms of memory consumption, we can observe that all
the algorithms perform well except DeDP, which is highly
memory-consuming. The results reflect that our techniques
that optimize DeDP are very effective. Overall, DeDPO-
based algorithms are the best in terms of utility score, while
DeGreedy-based algorithms have a better trade-off between
total utility score and running time.

Effect of cardinality of U . We next study the effect of
varying |U |, the results of which are presented in the sec-
ond column of Figure 2. |U | is varied from 100 to 5K. For
utility score, we can again observe that DeDP-based algo-
rithms perform the best, while RatioGreedy performs the
worst. However, DeGreedy-based algorithms are almost as
good as DeDP-based algorithms when |U | is as large as 5000.
The reason is that when |U | is 5000, the number of events
w.r.t. users is relatively small, and thus the optimality of
DeDP-based algorithms in finding a schedule for each user
becomes less significant. As for running time, we can ob-
serve that DeGreedy is the fastest, while DeDP is again the
slowest among the six. Also, we can see that DeDPO is
again more time-efficient than DeDP. Finally, for memory
consumption, we can observe once again that DeDP, with-
out optimization, performs much worse than the other al-
gorithms. Overall, DeDPO-based algorithms still return the
best planning, while DeGreedy-based algorithms again show
better trade-off between optimality and running time.

0.51 2 5 10
3600

3800

4000

4200

4400

4600

4800

5000

5200

f
b

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(a) Utility of varied fb

0.51 2 5 10
3200

3400

3600

3800

4000

4200

f
b

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(b) Utility of Power(0.5) µ

1020 50 100 200
0

2000

4000

6000

8000

mean c
v

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(c) Utility of Normal cv

0.51 2 5 10
3600

3800

4000

4200

4400

4600

4800

5000

5200

f
b

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(d) Utility of Normal bu

0.51 2 5 10
0

5

10

15

20

25

f
b

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(e) Run time of varied fb

0.51 2 5 10
0

5

10

15

20

25

f
b

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(f) Run time of Power(0.5) µ

1020 50 100 200
0

5

10

15

20

25

30

35

mean c
v

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(g) Run time of Normal cv

0.51 2 5 10
0

5

10

15

20

25

30

f
b

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(h) Run time of Normal bu

0.51 2 5 10
0

20

40

60

80

100

120

f
b

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(i) Memory of varied fb

0.51 2 5 10
0

20

40

60

80

100

120

f
b

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(j) Memory of Power(0.5) µ

1020 50 100 200
0

50

100

150

200

250

300

350

400

mean c
v

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(k) Memory of Normal cv

0.51 2 5 10
0

20

40

60

80

100

120

f
b

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(l) Memory of Normal bu

Figure 3: Results on varied fb and distributions.

Effect of capacity. We next study the effect of varying
the mean of cv, the results of which are presented in the
third column of Figure 2. We vary the mean of cv from
10 to 200. For utility score, we can first observe that the
utility scores increase as the mean of cv increases, which is
reasonable as more event-pairs can be added to the planning
when the capacity of events increases. Second, DeDP-based
algorithms again achieve the best utility results, while Ra-
tioGreedy is still the worst. We can finally observe that
DeDPO+RG improves the utility results of DeDP(DeDPO)
slightly, while DeGreedy+RG improves the utility results of
DeGreedy more significantly. For running time, the run-
ning time of all algorithms increases as the mean of cv in-
creases, which makes sense as each event can be arranged
for more users. Second, we can again obesve that DeGreedy
is the fastest, while DeDP is the least time-efficient. Finally,
as for memory consumption, DeDP without optimization is
still the most memory-consuming algorithm.

Effect of conflict ratio. We then study the effect of
varying conflict ratio cr, the results of which are presented
in the last column of Figure 2. We vary the conflict ratio
from 0.0 to 1.0. For utility score, our first observation is that
the utility scores decrease as the conflict ratio increases. The
reason is that when more pairs of events are conflicting with
each other, the availability of events is decreased when the
algorithms find schedules for users. As we can see from Fig-
ure 2d, the utility scores are quite low when cr = 1, in which
case each user can attend at most one event as all events are
conflicting with each other. Finally, we can observe that
DeDP-based algorithms perform significantly better than
the other algorithms when the conflict ratio increases. The

reason is that DeDP-based algorithms always return opti-
mal schedules for each user in each decomposed problem,
while DeGreedy-based algorithms may return much worst
schedules in each decomposed problem when the conflict ra-
tio increases since the greedy strategy of DeGreedy does
not consider conflicting degree of events. As for running
time, the first interesting observation is that the running
time of all the algorithms, especially that of DeDPO-based
algorithms and DeGreedy-based algorithms, decreases as cr
increases. The major reason is that when more events are
conflicting with each other, the number of iterations for both
DeDPO-based algorithms and DeGreedy-based algorithms
will decrease. As we can see from Figure 2h, DeDPO-based
algorithms are nearly as fast as DeGreedy-based algorithms
when cr is 0.5 or above, in which cases the time efficiency
advantage of the greedy strategy adopted by DeGreedy-
based algorithms becomes less significant. Finally, for mem-
ory consumption, DeDP is once again the worst among all
the algorithms. Overall, DeDPO-based algorithms demon-
strate their advantages in utility results when conflict ratio
increases, and they can be as fast as DeGreedy-based algo-
rithms when conflict ratio increases.

Effect of budget factor. We next study the effect of
varying budget factor fb, the results of which are presented
in the first column of Figure 3. We vary fb from 0.5 to 10.
For utility, we can first observe that the utility scores in-
crease as fb increases, which makes sense as users can attend
more events as fb increases and thus bu increases. However,
when fb ≥ 2, the utility scores increase much slower as fb
increases. The reason is that though budgets of users in-
crease, the number of events available to users is limited.

Thus, when fb is large, all events may have been full of
capacity and thus no more events can be added to users’
schedules though users’ budgets are sufficient. As for run-
ning time and memory consumption results, we can observe
again that DeGreedy-based algorithms are the most time-
efficient and DeDP is the most memory-consuming.

Effect of distribution. We then study the effect of vary-
ing distributions of µ, cv and bu respectively. In the second
column of Figure 3, we present the results when values of µ
are generated following a power distribution with parameter
0.5. We plot against different fb values, and the other pa-
rameters are set to default. We can observe that the trend-
ing patterns of utility scores, running time and memory con-
sumption are similar to those in the first column of Figure 3,
where values of µ are generated uniformly. We also generate
values of µ following normal distribution with mean 0.5 and
std 0.25 and a power distribution with parameter 4, whose
results are similar and we omit them for brevity.

In the third column of Figure 3, we present the results
when values of cv are generated following a normal distri-
bution, whose mean is varied from 10 to 200 and the std is
the mean value multiplied by 0.25. The trending patterns
of utility scores, running time and memory consumption are
also similar to those in the third column of Figure 2, where
the values of cv are generated uniformly.

Finally, in the last column of Figure 3, we present the
results when values of bu are generated following a normal
distribution, whose mean is 2 minv cost(u, v) +mid ∗ fb and
standard deviation is the mean value multiplied by 0.25,
where mid = 1

2
(maxv,v′ cost(v, v

′) + minv,v′ cost(v, v
′)). We

vary fb from 0.5 to 10. Again, we can observe that the
trending patterns of utility scores, running time and mem-
ory consumption are similar to those in the first column of
Figure 3, where the values of bu are generated uniformly.

Scalability. We next test the scalability of the algo-
rithms. Since DeDP is memory-consuming and thus not
scalable as our previous results show, we only test the scala-
bility of RatioGreedy, DeDPO, DeDPO+RG, DeGreedy and
DeGreedy+RG. The results are presented in the first three
columns of Figure 4, where we set |V | to 100, 200 and 500
respectively and vary |U |. The mean of cv is set to 200,
and the other parameters are set to default. For utility, we
can see that DeDPO-based algorithms still perform the best,
while RatioGreedy is the worst. For running time, we can
observe that RatioGreedy is not very scalable as its running
time increases quickly as the scale of data increases. We can
also see that DeGreedy-based algorithms are highly-efficient
even when the scale of data is large. Particularly, DeGreedy
is much more efficient than the other algorithms when |U | is
as large as 100K. In our special test case where |V | = 500,
|U | = 200K and the mean of cv is 500, DeGreedy returns
a planning with total utility score of 229,234 in around 13
minutes while DeDPO returns one with totally utility score
of 230,585 in more than 1.4 hours. It indicates that De-
Greedy has better a trade-off between optimality and run-
ning time. As for DeDPO-based algorithms, though they
are slower than the DeGreedy-based algorithms, their run-
ning time increases slowly as the scale of data increases. Fi-
nally, for memory consumption, all the algorithms consume
only very little memory in addition to the memory taken up
by input data. Thus, all algorithms are scalable in space.
Overall, DeDPO-based algorithms return the best planning
among all the algorithms and are scalable. DeGreedy-based

algorithms return worse planning but are more scalable, and
are preferable on extremely large datasets, e.g. cities with
millions of citizens, given their high efficiency.

Real datasets. We finally study results on real datasets.
In the last column of Figure 4, we present the results on the
Singapore dataset. We vary values of fb, and set the other
parameters to default. We can observe that the trending
patterns are similar to those in the first column of Figure 3,
where synthetic data is used. The results on the other two
real datasets are similar, and we omit them for brevity.

Summary. We finally summarize our findings.

• DeDPO improves the space and time efficiency of DeDP
significantly, and is much more scalable than DeDP.

• DeDP(DeDPO)-based algorithms always achieve the
largest total utility score among all the algorithms.
DeGreedy-based algorithms are the most time-efficient,
though achieve slightly worse total utility score than
DeDP(DeDPO)-based algorithms do.

• Both DeDPO-based algorithms and DeGreedy-based
algorithms are scalable in space and time.

6. RELATED WORK
In this section, we review the related work from three cat-

egories, mining and managing event-based social networks,
location and event recommendation in social networks and
bipartite graph matching.

Mining and managing event-based social networks.
With the prevalence of various kinds of EBSN platforms,
[21] is the first work on formulating and analysing the prop-
erties of EBSNs. Recently, some other problems in EBSN
are studied. A set of studies, such as [36][10][13], utilize
learning-based models to train data of EBSNs and then rec-
ommend events to related users. However, they focus on
recommendation rather than optimizing a global planning.

[11] studies the problem of discovering influential event
organizers based on the influence maximization problem[14]
and team formation problem[17][2], which only considers in-
terests of event organizers. Our work differs from them in
that we study the maximum utility event-participant plan-
ning problem.

In particular, a closely related research, Social Event Or-
ganization (SEO) problem [19], has been proposed recently.
This problem aims to maximize the overall satisfaction of
users towards the arranged events and the social affinity
among the users participating the same event. In SEO, each
event is associated with a lower bound and an upper bound
on the number of attendees, and every pair of users attend-
ing the same event contributes to the social affinity score.
Due to the pair-wise social affinity score, the SEO problem
is NP-hard to approximate and thus only heuristics are pro-
posed. More importantly, the SEO problem substantially
differs from ours since this work only considers a simple
case of assigning one single event to each participant and
thus naturally ignores both the spatio-temporal conflicts of
events and also multiple-event planning for each user.

Another related work [26] also studies a global event as-
signment strategy, but does not consider travel expenditure.
[29] studies another objective function, max-min, regarding
the event arrangement problem, but still does not consider
travel cost between events.

10K 20K 30K 40K 50K 100K
13000

14000

15000

16000

17000

18000

19000

|U|

U
ti
lit

y

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(a) Utility (|V | = 100)

10K 20K 30K 40K 50K 100K
26000

28000

30000

32000

34000

36000

38000

40000

42000

|U|

U
ti
lit

y

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(b) Utility (|V | = 200)

10K 20K 30K 40K 50K 100K
30000

40000

50000

60000

70000

80000

90000

100000

|U|

U
ti
lit

y

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(c) Utility (|V | = 500)

0.51 2 5 10
2000

2200

2400

2600

2800

3000

3200

3400

3600

f
b

U
ti
lit

y

RatioGreedy

DeDP(DeDPO)

DeDPO+RG

DeGreedy

DeGreedy+RG

(d) Utility of Singapore

10K 20K 30K 40K 50K 100K
0

50

100

150

200

250

|U|

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(e) Run time (|V | = 100)

10K 20K 30K 40K 50K 100K
0

50

100

150

200

250

|U|

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(f) Run time (|V | = 200)

10K 20K 30K 40K 50K 100K
0

500

1000

1500

2000

2500

3000

|U|

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(g) Run time (|V | = 500)

0.51 2 5 10
0

50

100

150

200

250

f
b

T
im

e
 (

s
e
c
s
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

(h) Run time of Singapore

10K 20K 30K 40K 50K 100K
0

10

20

30

40

50

60

70

80

|U|

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(i) Memory (|V | = 100)

10K 20K 30K 40K 50K 100K
0

20

40

60

80

100

120

140

160

|U|

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(j) Memory (|V | = 200)

10K 20K 30K 40K 50K 100K
0

50

100

150

200

250

300

350

400

|U|

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(k) Memory (|V | = 500)

0.51 2 5 10
0

20

40

60

80

100

f
b

M
e
m

o
ry

 (
M

B
)

RatioGreedy

DeDP

DeDPO

DeDPO+RG

DeGreedy

DeGreedy+RG

Input Memory

(l) Memory of Singapore

Figure 4: Results on scalability test and real dataset.

Location recommendation in social networks. Due
to the recent popularity of location-based social networks
(LBSNs), this topic is quite hot [25][18][21][34][20][9][28][35]
[22][15][15][1]. However, they focus on mining single user’s
interests in certain venues and make user-oriented recom-
mendation. Also, they do not consider spatio-temporal con-
flicts, capacity of events or travel budget of users. Our prob-
lem is different from theirs since we satisfy the interests of
most users with a systematic planning while consider spatio-
temporal conflicts and travel cost.

In addition, location-based travel route recommendation[16]
[6][24][8][4] tries to recommends some landmarks to tourists,
where travel expenditure is considered. However, these works
focus on making recommendation to one single user and do
not consider conflicts, and we differ from them in that we
make a global planning for users. Thus, their solutions can-
not be applied to our problem.

Bipartite graph matching. The maximum weighted
bipartite matching [32][5] is quite related to our problem.
However, the bipartite matching problem does not take spatio-
temporal conflicts or travel cost between nodes or capacity
of nodes into consideration. Recent works [33][31][30][27][23]
study the problem of spatial matching, which integrates spa-
tial information and capacities of nodes into the weighted
bipartite matching problem. However, they still do not con-
sider spatio-temporal conflicts or travel cost of nodes. Notice
the original maximum weighted bipartite matching can be
solved in polynomial time. However, our problem is differ-
ent since our problem is NP-hard due to the conflicts and
travel cost between nodes.

7. CONCLUSION
In this paper, we propose a novel social event-participant

planning problem called utility-aware social event-participant
planning (USEP). We first analyze our differences with other
problems in EBSNs and prove the NP hardness of our prob-
lem. In order to solve this problem, we first devise a greedy-
based heuristic solution, called RatioGreedy, which performs
fast in certain circumstances but has no approximation guar-
antee. To obtain better approximation quality, a two-step
approximation framework is presented. Based on this frame-
work, we first propose the DeDP algorithm which has a
1
2
-approximation ratio but consumes more space for large

datasets. In order to improve the time/space efficiency of
the DeDP algorithm, we further devise the DeDPO algo-
rithm using a series of optimized techniques. Furthermore,
to address the challenge of massive data, we also design the
DeGreedy algorithm following the two-step approximation
framework, which runs faster than the DeDP algorithm but
returns a planning with a lower total utility score. We con-
duct extensive experiments that verify the efficiency, effec-
tiveness and scalability of the proposed approaches.

Acknowledgements: We are grateful to anonymous re-
viewers for their constructive comments on this work. This
work is supported in part by the Hong Kong RGC Project
N HKUST637/13, National Grand Fundamental Research
973 Program of China under Grant 2014CB340303, NSFC
Grant No. 61328202/61300031, Microsoft Research Asia
Gift Grant, Google Faculty Award 2013 and Microsoft Re-
search Asia Fellowship 2012.

8. REFERENCES
[1] S. Amer-Yahia, S. B. Roy, A. Chawlat, G. Das, and

C. Yu. Group recommendation: Semantics and
efficiency. In VLDB’09.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo,
A. Gionis, and S. Leonardi. Online team formation in
social networks. In WWW’12.

[3] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz.
Local ratio: A unified framework for approximation
algorithms. in memoriam: Shimon even 1935-2004.
ACM Computing Surveys (CSUR), 2004.

[4] I. Brilhante, J. A. Macedo, F. M. Nardini, R. Perego,
and C. Renso. Where shall we go today?: Planning
touristic tours with tripbuilder. In CIKM’13.

[5] R. E. Burkard, M. Dell’Amico, and S. Martello.
Assignment Problems, Revised Reprint. 2009.

[6] C. Chen, D. Zhang, B. Guo, X. Ma, G. Pan, and
Z. Wu. Tripplanner: Personalized trip planning
leveraging heterogeneous crowdsourced digital
footprints. IEEE Transactions on Intelligent
Transportation Systems (T-ITS), 2014.

[7] R. Cohen, L. Katzir, and D. Raz. An efficient
approximation for the generalized assignment
problem. Information Processing Letters, 2006.

[8] M. De Choudhury, M. Feldman, S. Amer-Yahia,
N. Golbandi, R. Lempel, and C. Yu. Automatic
construction of travel itineraries using social
breadcrumbs. In HT’10.

[9] T. De Pessemier, J. Minnaert, K. Vanhecke,
S. Dooms, and L. Martens. Social recommendations
for events. In CEUR Workshop’13.

[10] R. Du, Z. Yu, T. Mei, Z. Wang, Z. Wang, and B. Guo.
Predicting activity attendance in event-based social
networks: Content, context and social influence. In
UbiComp ’14.

[11] K. Feng, G. Cong, S. S. Bhowmick, and S. Ma. In
search of influential event organizers in online social
networks. In SIGMOD’14.

[12] M. R. Garey and D. S. Johnson. Computers and
intractability: A guide to the theory of
NP-completeness. 1979.

[13] S. Karanikolaou, I. Boutsis, and V. Kalogeraki.
Understanding event attendance through analysis of
human crowd behavior in social networks. In
DEBS’14.

[14] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
the spread of influence through a social network. In
KDD’03.

[15] H. Khrouf and R. Troncy. Hybrid event
recommendation using linked data and user diversity.
In RecSys’13.

[16] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura.
Travel route recommendation using geotags in photo
sharing sites. In CIKM’10.

[17] T. Lappas, K. Liu, and E. Terzi. Finding a team of
experts in social networks. In KDD’09.

[18] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F.
Mokbel. Lars: A location-aware recommender system.
In ICDE’12.

[19] K. Li, W. Lu, S. Bhagat, L. V. S. Lakshmanan, and
C. Yu. On social event organization. In KDD’14.

[20] G. Liao, Y. Zhao, S. Xie, and P. S. Yu. An effective
latent networks fusion based model for event
recommendation in offline ephemeral social networks.
In CIKM’13.

[21] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and
J. Han. Event-based social networks: linking the
online and offline social worlds. In KDD’12.

[22] X. Liu, Y. Tian, M. Ye, and W.-C. Lee. Exploring
personal impact for group recommendation. In
CIKM’12.

[23] C. Long, R. C.-W. Wong, P. S. Yu, and M. Jiang. On
optimal worst-case matching. In SIGMOD’13.

[24] E. H.-C. Lu, C.-Y. Chen, and V. S. Tseng.
Personalized trip recommendation with multiple
constraints by mining user check-in behaviors. In
GIS’12.

[25] E. Minkov, B. Charrow, J. Ledlie, S. Teller, and
T. Jaakkola. Collaborative future event
recommendation. In CIKM’10.

[26] J. She, Y. Tong, L. Chen, and C. C. Cao.
Conflict-aware event-participant arrangement. In
ICDE’15.

[27] Y. Sun, J. Huang, Y. Chen, R. Zhang, and X. Du.
Location selection for utility maximization with
capacity constraints. In CIKM’12.

[28] Y.-C. Sun and C. C. Chen. A novel social event
recommendation method based on social and
collaborative friendships. In SocInfo’13.

[29] Y. Tong, R. Meng, and J. She. On bottleneck-aware
arrangement for event-based social networks. In ICDE
Workshop SSEPM’15.

[30] L. H. U, K. Mouratidis, M. L. Yiu, and N. Mamoulis.
Optimal matching between spatial datasets under
capacity constraints. ACM Transactions on Database
Systems (TODS), 2010.

[31] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis.
Capacity constrained assignment in spatial databases.
In SIGMOD’08.

[32] D. B. West. Introduction to graph theory. 2001.

[33] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao.
On efficient spatial matching. In VLDB’07.

[34] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. Lcars: A
location-content-aware recommender system. In
KDD’13.

[35] Q. Yuan, G. Cong, and C.-Y. Lin. Com: a generative
model for group recommendation. In KDD’14.

[36] W. Zhang, J. Wang, and W. Feng. Combining latent
factor model with location features for event-based
group recommendation. In KDD’13.

APPENDIX
Proof of Theorem 1:

Proof. In order to complete the proof, we reduce the
knapsack problem, which is a well-known NP-complete prob-
lem [12], to the USEP problem. The following is an instance
of the knapsack problem. Given n items {x1, x2, ..., xn},
each with value ai > 0 and weight wi > 0, the maximum
weight W that a bag can carry, decide if there is a collection
of items C = {xs1 , xs2 , ..., xsm} (without loss of generality
si < sj , ∀1 ≤ i < j ≤ m) such that

∑m
i=1 asi = K and∑m

i=1 wsi ≤W .
We then construct an instance of the USEP problem from

the instance of the knapsack problem accordingly:
(1) Let |U | = 1, U = {u}, and bu = W .
(2) Each item of the knapsack instance corresponds to an

event. Let µ(vi, u) = ai
max ai

,∀1 ≤ i ≤ n, and cvi = 1, ∀1 ≤
i ≤ n.

(3) Assign any value to {tvi1 , t
vi
2 } subject to tvi1 < tvi2 , ∀1 ≤

i ≤ n and tvi2 < t
vi+1
1 , ∀1 ≤ i < n.

(4) The travel cost between u and an event vi is con-
structed as: cost(u, vi) = cost(vi, u) = wi

2
, ∀1 ≤ i ≤ n.

(5) The travel cost between two events is constructed as:

cost(vi, vj) =

{
wi+wj

2
1 ≤ i < j ≤ n

+∞ otherwise

We want to decide if there is a feasible schedule Su for
u such that

∑
vi∈Su

µ(vi, u) = K
max ai

and it satisfies all the
constraints.

We can see that if the collection C exists, then the sched-
ule Su = {vs1 , vs2 , ..., vsm} is feasible, and it satisfies that∑

vi∈Su
µ(vi, u) = K

max ai
and that cost(u, vs1)+cost(vsm , u)+∑m

i=2 cost(vsi−1, vsi) =
∑m

i=1 wsi ≤W . On the other hand,
if the schedule Su = {vs1 , vs2 , ..., vsm} exists, then there
exists a collection C = {xs1 , xs2 , ..., xsm} satisfying that∑m

i=1 asi = K and that
∑m

i=1 wsi ≤ W . This completes
the proof.

Proof of Lemma 1:

Proof. If |Su| = 1 and Su = {vi}, it is clear that Su

violates the budget constraint of u. If |Su| > 1 and vi ∈
Su, due to the triangle inequality property of cost, it is

clear that cost(u, vu1)+
∑|Su|

j=2 cost(v
u
j−1, v

u
j)+cost(vu|Su|, u) ≥

cost(u, vi) + cost(vi, u) > bu. Thus, Su is infeasible.

Proof of Theorem 3:

Proof. Let Ar = ∪j≥r{Suj} ⊆ A be the solution w.r.t.
µr, i.e. Ω(Ar) =

∑
j≥r

∑
vi,k∈Suj

µr(vi,k, uj). Notice that

according to the way we update µr, µr+1(vi,k, ur) = 0, ∀1 ≤
i ≤ |V |, 1 ≤ k ≤ cvi . Since µr+1(vi,k, uj) = µr(vi,k, uj),
∀1 ≤ i ≤ |V |, 1 ≤ k ≤ cvi , j < r, it is easy to see that
µr+1(vi,k, uj) = 0, ∀1 ≤ i ≤ |V |, 1 ≤ k ≤ cvi , j ≤ r. Thus,
when calculating the total utility score of a solution w.r.t.
µr, we do not need to sum over users in {uj |j < r}.

We then prove by induction and start from the last user,
i.e. r = |U |. When r = |U |, since the dynamic program-
ming algorithm returns an optimal schedule for u|U|, A|U| =

{Su|U|} is an optimal solution w.r.t. µ|U|(v̂·, u|U|). Since

µ|U|(v̂i, u|U|) ≥ µ|U|(vi,k, u|U|), ∀1 ≤ i ≤ |V |, 1 ≤ k ≤ cvi ,
Ω(A|U|) = Ω(A?

|U|) ≥ 1
2
Ω(A?

|U|), where A?
|U| is the optimal

solution w.r.t. µ|U|.
Suppose Ar+1 is a 1

2
-approximate solution w.r.t. µr+1.

We next prove that Ar is also a 1
2
-approximate solution

w.r.t. µr. Recall that µr+1(vi,k, ur) = 0, ∀1 ≤ i ≤ |V |, 1 ≤
k ≤ cvi . Thus, the schedule of ur does not affect the total
utility score of the solution w.r.t. µr+1. Since Ar+1 ⊆ Ar

and Ar+1 is a 1
2
-approximate solution w.r.t. µr+1, clearly

Ar is also a 1
2
-approximate solution w.r.t. µr+1.

We then define µr
o as follows.

µro(vi,k, uj) =

{
µr(vi,k, ur) (j = r) or (j > r and vi,k ∈ Ŝur)

0 otherwise

(6)

Consider an arbitrary feasible planning A′ = ∪j{S′uj
}

w.r.t. µr
o, and we have

Ωo(A′) =
∑
j

∑
vi,k∈S′uj

µr
o(vi,k, uj)

=
∑
j≥r

∑
vi,k∈S′uj

µr
o(vi,k, uj)

=
∑

vi,k∈S′ur

µr(vi,k, ur)

+
∑
j>r

∑
vi,k∈Ŝur∩S′uj

µr(vi,k, ur) (7)

Notice that in the planing A′, each vi,k can be included
in at most one of S′uj

, ∀j > r. Therefore, we have

∑
j>r

∑
vi,k∈Ŝur∩S′uj

µr(vi,k, ur) ≤
∑

vi,k∈Ŝur

µr(vi,k, ur) (8)

Note that the schedule Ŝur returned by the dynamic pro-
gramming algorithm for ur is an optimal solution w.r.t.
µr(v̂·, ur) and that µr(v̂i, ur) ≥ µr(vi,k, ur), ∀1 ≤ i ≤ |V |, 1 ≤
k ≤ cvi . Therefore, we have

∑
vi,k∈S′ur

µr(vi,k, ur) ≤
∑

vi,k∈Ŝur

µr(vi,k, ur) (9)

Combining Equations (8) and (9), we have

Ωo(A′) ≤ 2
∑

vi,k∈Ŝur

µr(vi,k, ur) = 2Ωo(Ŝur) (10)

Notice that regarding Ar, for each vi,k ∈ Ŝur , it is ei-
ther in Sur or in ∪j>rSuj , and appears only once in Ar.

For the other vi,k’s that are not in Ŝur , they cannot be
in Sur and do not affect Ωo(Ar) according Equation (6).

Therefore, we have Ωo(Ar) = Ωo(Ŝur) ≥ 1
2
Ωo(A′). Thus,

Ar is a 1
2
-approximate solution w.r.t. µr

o. Notice that

µr(·, ·) = µr+1(·, ·) + µr
o(·, ·). Based on Theorem 2, Ar is

thus a 1
2
-approximate solution w.r.t. µr.

By induction, A = ∪j{Suj} is a 1
2
-approximate solution

w.r.t. µ1 = µ, which completes the proof.

Proof of Lemma 2:

Proof. Clearly, for 1 ≤ l ≤ r1, l ≤ r, it holds that
µl(vi,k, ur) = µ(vi, ur) since vi,k is not included in any of

Ŝuj , 1 ≤ j < r1 and thus µl(vi,k, ur) does not change in the
first r1 − 1 iterations according to the way we update µr.

We prove the remaining of the claim by induction. For
r1 < l ≤ r2, l ≤ r, we have

µl(vi,k, ur) = µl−1(vi,k, ur)

= · · ·
= µr1+1(vi,k, ur)

= µr1(vi,k, ur)− µr1(vi,k, ur1)

= µ(vi, ur)− µ(vi, ur1) (11)

Suppose µl(vi,k, ur) = µ(vi, ur)−µ(vi, urjl
) holds for jl =

j − 1, i.e. rj−1 < l ≤ rj , l ≤ r, we next prove that the
equation also holds for rj < l ≤ rj+1, l ≤ r. For rj < l ≤
rj+1, l ≤ r, we have

µl(vi,k, ur) = µl−1(vi,k, ur)

= · · ·
= µrj+1(vi,k, ur)

= µrj (vi,k, ur)− µrj (vi,k, urj)

= (µ(vi, ur)− µ(vi, urj−1))

− (µ(vi, urj)− µ(vi, urj−1))

= µ(vi, ur)− µ(vi, urj) (12)

which completes the proof.

Proof of Lemma 3:

Proof. We prove by induction. Before the 1st iteration,
it is clear that we have pushed a valid event with the largest

ratio value into H during in the initialization step. Suppose
before the i-th iteration, the valid event with the largest
ratio value must be in H. We next prove that after updating
H in the i-th iteration, all valid event candidates with the
possibly largest ratio value must be in H.

Denote v̂i as the event popped from H in the i-th itera-
tion. First, if v̂i is the only event in Ŝur , the way we update
H ensures that we scan through the remaining V ′r \ {v̂i}
events to push the next valid event candidates with the
largest ratio values into H. Second, if v̂i is the first but
not the only event in Ŝur , recall that v̂si is the successor

of v̂i in Ŝur . Notice that only the inc cost values of the
events in {v̂1, v̂2, · · · , v̂i−1} and {v̂i+1, v̂i+2, · · · , v̂si−1} will

be changed when v̂i is added into Ŝur , and these events are
not yet in H. Also, the way we update H ensures that the
valid event candidates in {v̂1, · · · , v̂i−1} and {v̂i+1, · · · , v̂si−1}
with the largest ratio values will be scanned. For the other
events whose inc cost values do not change, they have been
scanned through in previous iterations. Therefore by induc-
tion, the next valid event candidate with the largest ratio
value must be in H. Similarly, if v̂i is the last but not the
only event in Ŝur , the way we update H ensures that we
scan through all events whose inc cost are changed and the
next valid event with the largest ratio value must be in H.
Finally, if v̂i has a precedent v̂pi and a successor v̂si in Ŝur ,
we also scan through all events whose inc cost are changed.
Therefore, in all cases, the next valid event with the largest
ratio value must be in H after we update H in the i-th
iteration if it exists, which completes the proof.

